

Forecast Enhancements in the Buyer-side Mitigation Rules - Example

Julia Popova, PhD
ICAP Market Mitigation & Analysis Department

ICAPWG

October 27, 2016

Rensselaer, NY

Background and Objective

- Stakeholder meetings:
 - December 12, 2014, March 18, 2015, May 18, 2016, July 6, 2016,
 August 10, 2016, September 7, 2016
- Today's presentation provides
 - Proposal Overview
 - Hypothetical Example
- Draft tariff revisions are also being presented today
- Next steps

Proposal

• Include in forecast:

- Currently operating Generators and UDR projects (i.e., most recently published Gold Book):
 - Including Forced Outage and Inactive Reserve unless there is publicly available information, demonstrating with reasonable certainty that the Generator or UDR project will permanently cease operations
- Units with "positive indicators" of repair and return to service:
 - This Includes:
 - Generators in an: 1) ICAP Ineligible Forced Outage (IIFO) including Catastrophic Failure units; 2) Mothball Outage (MO); 3) Retired; 4) long-term partial long-term derate;
 - UDR projects in states similar to Generators (provisions being developed)

Proposal cont'd

Exclude from forecast:

- Retired if a Generator or a similar status for a UDR project
- Generators or UDR projects with expired CRIS
- Relinquished and transferred CRIS
- Generators and UDR projects that are transferring their CRIS
- Other publicly available information indicating that a Generator or UDR project will cease operation
- Include in forecast if "inclusion test" is passed:
 - Generators and UDR projects without "positive indicators" of repair and return to service:
 - Any of the existing and noticed (as applicable) IIFO, MO, and Retired (and similar for UDR projects)
 - RMR Generators with an expiration date during Mitigation Study Period

Hypothetical Example (p1)

- There are 3 Class Year Examined Facilities
 - U1, U2, and U3
- There are 5 existing units currently not in the market and which have ability to re-enter the market:
 - G1, G2, G3
- significant capital investment necessary

- G4

- small capital investment needed

G5

- sizable CapEx and long lead time required

Hypothetical Example (p2)

- Step 0:
 - Units with small capital expenses and/or short lead time to return to the market will be included at (seasonally shaped) "in-service price"
 - G4 at it's in-service price "P"
 - Units with significant capital expenses and/or long lead time to return to the market will be "tested"* iteratively

^{* &}quot;Testing" is solely for purposes of determining whether the unit should be included in the BSM forecasts

Hypothetical Example (p3)

• Step I:

- if inclusion test is not passed when ONLY the tested generator is in the forecast, then it will not be included in the BSM forecast
- if inclusion test is passed with ALL existing but out-of-service generators and Examined Faculties are in the forecast, then it will be included in the BSM forecast as "in-service"

G1	G2	G3	G4	G5	U1	U2	U3	Outcome
√								NPV _{G1} >0, G1 tested further
	√							$NPV_{G2} > 0$, G2 tested further
		✓						NPV _{G3} >0, G3 tested further
			✓ at "P"					"Clears" so G4 tested further at its in-service price
				✓				NPV _{G5} <0, G5 is not included
√	✓	√	✓ at "P"	-	√	✓	✓	$NPV_{G1} > 0$, G1 is included

Hypothetical Example (p4)

- Step II:
 - Perform iterative testing
 - Purpose is to efficiently account for competition with proposed new units (those remaining in completed prior Class Years, that have not yet entered service, and the Examined Facilities)

Hypothetical Example (p5)

- Results from Step I:
 - G1 is modeled as in-service for the BSM forecast
 - G5 is not included into the BSM forecast
- Step II: test G2 and G3
 - G2 and G3 have non-negative NPV when G1 and G4 included (tested individually and collectively)
 - NPV of G2 is not positive if U1 included in addition to G1, G2, G3, and G4
 - Test G3
 - NPV of G3 is negative if G1, G4, and all three CY units U1, U2, U3 modeled. Thus, do not include G3
 - Retest G2
 - If NPV of G2 is positive when G1, G4, U1, U2, and U3 modeled then included G2

G1	G2	G3	G4	G5	U1	U2	U3	Outcome
+	√		✓ at "P"	-				$NPV_{G2} > 0$
+		✓	✓ at "P"	_				$NPV_{G3} > 0$
+	✓	✓	✓ at "P"	-				$NPV_{G2} > 0$ and $NPV_{G3} > 0$
+	√	✓	✓ at "P"	_	✓			$NPV_{G2} < 0$ and $NPV_{G3} > 0$
+		✓	✓ at "P"	-	✓	✓		$NPV_{G3} > 0$
+		✓	✓ at "P"	_	✓	✓	√	$NPV_{G3} < 0$
+	√	-	✓ at "P"	-	✓	✓	✓	If NPV _{G2} >0 then include, exclude otherwise

Next Steps

- The NYISO will consider input received during today's ICAPWG meeting
- Stakeholders can also provide additional comments in writing to <u>deckels@nyiso.com</u> by Nov 11, 2016
- BIC/MC

The Mission of the New York Independent System Operator, in collaboration with its stakeholders, is to serve the public interest and provide benefit to consumers by:

- Maintaining and enhancing regional reliability
- Operating open, fair and competitive wholesale electricity markets
- Planning the power system for the future
- Providing factual information to policy makers, stakeholders and investors in the power system

www.nyiso.com